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Abstract

Creating new music works is a complex and time-
consuming task for human beings. Applying deep neural
networks to music creation can greatly improve its effec-
tiveness. However, early work often ignores the role of emo-
tion while generating music. In our project, we will use a
Transformer-GAN based model with VAE encoders helping
disentangle interpretive features to generate music condi-
tioned on emotions.

1. Introduction
The demand for new musical compositions has increased

rapidly as a result of the music industry’s tremendous ex-
pansion these years. However, creating new music pieces
can be a time-consuming and complicated task. To solve
the problem, deep neural networks are more and more being
applied to music creation in recent years, especially single-
track and polyphonic music, as a result of breakthroughs in
deep learning techniques. The significance of taking emo-
tional content and particular genres into account while cre-
ating music, however, has frequently been disregarded in
earlier work in this field. As musical tastes and style needs
might fluctuate substantially depending on the situation, this
is a severe constraint. Consequently, there is a critical need
for a conditional model that can take advantage of the im-
pact of mood and genre on musical composition. These cru-
cial elements can be incorporated into the process of creat-
ing music to help us produce more distinctive and varied
musical works that satisfy the requirements and expecta-
tions of various audiences. The music business will gain
from this, and music consumers’ general listening pleasure
will also be improved.

Previous works provide us with some inspiration, mak-
ing the generation process interpretable. Followed by a
series of works by Music X Lab from NYU Shanghai,
EC2-VAE model [38] makes the variation of one pitch and
rhythm while preserving the other possible. [35] decom-
posed the music into two factors, chord and texture(rhythm,
style, etc.) which allows the AI model to ”improvise” on a

Generator

Discriminator

z ∼ p(z)

y ∈ {0, 1}
Backpropagation

Backpropagation

Figure 1. Architecture of a Generative Adversarial Networks
(GAN) framework.

chord progression or ”accompany to the singer” as human
does. [33] also generate music sequences by finding multi-
ple intrinsic music features from low to high level to make
the generation more controllable. When human players are
performing, their emotions are reflected in the way they im-
provise or accompany. These make us think about whether
such representations can be leveraged for our goal to gener-
ate music with specific emotions.

Emotion can be quantified along two dimensions — Va-
lence and Arousal [32]. This representation allows the emo-
tion to be added as a condition to LSTM model [34] and
Transformer model [26]. In this project, we focus on the
task of single-track and polyphonic music generation con-
ditioned with emotion. Inspired by the generation frame-
work conditioning on emotion in [26] and good music fea-
ture disentanglement in [35], we want to strengthen the fea-
tures that are semantically related to emotions to achieve
decent emotionally conditioned generation of music. We
also examined and evaluated different generation models in
this project.

2. Related Work
2.1. Generative Adversarial Networks

Generative Adversarial Networks (GAN) framework is
a powerful generative modelling method. A GAN consists
of two models, a generator G and a discriminator D. The
overall illustration of the GAN framework is shown in Fig-
ure 1. Generator G is responsible for generating samples
that are indistinguishable from the true samples, while dis-
criminator D is responsible for distinguishing the true sam-



ples from the generated samples. The training process in
Gans is adversarial, where the generator G and discrimina-
tor D compete against each other. The discriminator D is
trained to minimize the binary loss by correctly classifying
the input as either true or generated, while the generator G
is trained to maximize the binary loss by trying to generate
samples that can fool the discriminator into classifying it as
true. [11]:

min
G

max
D

(Ex[logD(x)] +Ez[log(1−D(G(z))])

Here x is the real data and z is the input to the generator.
This adversarial training process continues until the samples
generated by the generator G are generated by the discrimi-
nator d that are indistinguishable from the true samples.

2.2. Transformer

The Transformer architecture [36], which was unveiled
in 2017, has since grown to be the most well-liked Nat-
ural Language Processing (NLP) model and has been ef-
fectively used in a variety of different fields, including pic-
ture identification and audio processing. A substantial part
of its success can be credited to the Self-Attention mech-
anism, which enables the model to represent relationships
between each element in a sequence. Based on a similar-
ity function between the queries and keys, the mechanism
computes a weighted sum of the values using matrices of
Queries, Keys, and Values. The Linear Transformer [9] is
one of the models created to lessen the processing required
to use Attention matrices [2, 7, 9, 20]. It makes use of an at-
tention mechanism with linear computational and memory
needs that increase linearly as sequence length increases.
This is done by the model by replacing the normal softmax
similarity score with a more effective factorization of the
matrix multiplications required for the attention matrix cal-
culation.

2.3. Music Latent Representation Learning and
Disentanglement

Representation learning is an important component of
the process of creating new music, as it maps discrete se-
quences of music and conditions to a continuous latent
space. VAEs (Variational Autoencoder) [19] and GANs
(Generative Adversarial Networks) [10] are now considered
the two best frameworks for music representation learn-
ing. Both frameworks are used to construct a latent rep-
resentation space z between a bidirectional mapping and a
sample distribution x such that a new generation of sam-
pled sequences of z. This is done by building a mapping
between the distribution of samples x and the latent rep-
resentation space z. In the last few years, a great deal
of work has been carried out within the VAE framework,
and VAEs [3, 8, 30, 37] has also achieved significant per-
formance. Several different disentanglement methods have

Figure 2. Emotion conditions

been proposed, [4, 17, 22, 23, 35, 38], in analogy to sev-
eral musical elements representing the latent space indepen-
dently, with the aim of providing a better interpretation. For
this project, we will use the result of [35] as it makes a sepa-
ration between chords and textures, both of which carry im-
portant emotional information. This will allow us to adopt
polyphonic midi sequences.

3. Data

3.1. Datasets

In this project, following the work by Neves et al. [26]
and the work by Wang et al. [38], we intend to employ three
datasets, which are AILABS17k [13] and EMOPIA [15].

3.1.1 AILABS17k dataset

The AILABS17k dataset was created by transcribing audio
clips of piano performances collected from YouTube using
a state-of-the-art piano transcription model [12]. The re-
sulting transcriptions were processed into over 108 hours of
MIDI files, comprising the final dataset.

3.1.2 EMOPIA dataset

The EMOPIA dataset is constructed using a similar method-
ology as AILABS17k, but with a focus on emotional piano
performances. The dataset comprises a collection of 387 pi-
ano solo performances, in which each MIDI piece has been
manually segmented into clips with specific emotion tags.

The emotions are divided into four classes, which corre-
spond to four quadrants of two dimensions coordinate with
dimension of valance and arousal. The specific value is
shown in Figure 2.



3.2. Data Representation

3.2.1 MIDI-like Events

As proposed in [27], MIDI-like events represent the start-
ing of a note by ’Note ON’, and the releasing of if by ’Note
OFF’. Similar to the MIDI in music production, it also has
another attribute ’Time Shift’ which associates each note
with time. However, as said in [14], MIDI cannot fully rep-
resent information such as bars, beats, and sub-beats. But in
real compositions, those features are quite crucial for repre-
senting recurrent beat or melody patterns.

3.2.2 REMI

To solve this problem, Huang et al [14] proposed another
data representation method called REMI, which stands for
REvamped MIDI-derived events. Different from MIDI,
the events are represented by token sequences of integers.
”None ON”, ”Note Duration”, ”Velocity”, ”Tempo”, ”Bar”,
and ”Beat” events are mapped to different token values. Us-
ing REMI, transformers can generate longer music pieces to
minutes, with improved harmony and more coherent struc-
tures. For example, event sequence ’Tempo Class(mid),
Tempo Value(4), Position(1/16), Note Velocity(11), Note
On(57), Note Duration(7)’ is represented as ’4, 206, 3, 74,
96, 45’.

In this project, we will use REMI to represent the data.

4. Methodology
4.1. Transformer GAN

The overall structure of our model is shown in Figure 3.
This structure is based on the model proposed in [26]. The
attention blocks in both generator and discriminator are lin-
ear versions of the Attention Mechanism [18]. In the gen-
erator, the condition of emotion is included by calculating
the bias and standard deviation of Layer Normalization [1]
based on the input condition. The generator takes in the to-
ken sequences and generates the output sequence, which is
the music piece. The input sequence to the discriminator
is the output sequence of the generator. The discrimina-
tor will produce both a global map predicting whether the
whole piece is real and satisfy the condition, and a local
map predicting whether each local patch in the music piece
is real and satisfy the condition [26]. The global predic-
tion corresponds to the CLS token, and the local predictions
correspond to 16 local patches equally split from the input
sequence. In the discriminator, the condition is included
by an inner product between the embedded condition and
features, which is according to the projection discriminator
in [24]. The discriminator’s each global or local output is
1 if the input satisfies the emotion condition and realness
simultaneously, and 0 otherwise.

(a) Generator

(b) Discriminator

Figure 3. Overall architecture of our intended model. Genera-
tor(above), Discriminator(below). Here ’C’ stands for concatena-
tion, ’+’ for summation, and ’·’ for inner product. ’CLS’ and ’Pos’
are used to represent [CLS] token and positional embedding. ’Fc’
stands for fully connected layer.

The technique of predicting both globally and locally
forces the model to prioritize local structure. Texture, or
the rhythm/style, is an important feature that can decide the
emotion of the music [28]. We intend to utilize the disen-
tanglement VAE model in [35] to extract the texture fea-
tures, and let the discriminator to utilize the texture fea-
tures together with global and local information, in order
to improve the performance. For each generated piece, the
texture features extracted by the VAE texture encoder is a
256-dimensional feature, which will be concatenated to the
output feature map from the attention block before going
into the fully-connected classifier. The output feature map
from the attention block will have an inner product with the
condition and then be added back to the output of the fully-
connected layer. The condition in generator will go through
a fully-connected layer to get the condition-specific bias and
variance for the layer normalization layer. The detailed ar-
chitecture of the VAE model is described in the next section.

4.2. Pretrained VAE

The overall structure of the trained VAE disentanglement
model is shown in Figure 4. We only adopt the texture en-
coder to extract texture features and do not use the decoders



Figure 4. Overall architecture of our VAE framework model. Note
that we will use the trained model directed from [35], without fur-
ther training.

or chord encoder in [35]. Two encoders are described be-
low.

Chord Encoder: The process of the chord encoder begins
with extracting the chord progression under one-beat reso-
lution, with the application of rule-based methods [29] [39].
The output of the progression is a matrix that represents the
chord information with every column representing a one-
beat chord. Each chord itself is a 36-dimensional vector,
consisting of three 12-dimensional parts: a one-hot vec-
tor indicating the pitch class of the root, a one-hot vector
for the bass and a multi-hot chroma vector. Subsequently,
the progression is passed through a bi-directional GRU en-
coder [31] to get the final chord latent representation zchd.

Texture Encoder: The texture encoder encodes the in-
put sequence to a matrix, whose rows of the matrix denote
MIDI pitches while columns represent 1

4 beat. The goal
of the texture encoder is to learn a chord-invariant repre-
sentation of texture by balancing the translation invariance
property of convolution and the blurring effect of the max-
pooling layer [21]. Then a convolutional module [25] is
used in order to extract a blurry “concept sketch” of the tex-
ture with minimal underlying chord information. The out-
put goes through a bi-directional GRU encoder to extract
the texture representation ztxt.

4.3. Training

The training has two stages. In the first stage, the genera-
tor will be trained with both EMOPIA and AILABS datasets
to gain a good modeling of music. The second stage follows

the standard GAN training steps, and the second stage will
only use the EMOPIA datasets with emotion labels to let
the generator can generate according to the given emotion
condition.

For the first stage, the generator will be trained us-
ing teacher forcing method similar to language modeling,
which is to predict the next word given the input sequence.
Under REMI representation, each music event can be seen
as a word. The emotion labels is not used in the first stage
because AILABS dataset does not have emotional data.
This stage aims to provide a good pre-training for gener-
ator by utilizing the large quantity of samples without emo-
tion tags in AILABS. In this stage, the input sequences for
the generator have lengths of 2048 in REMI representation
form. The input is obtained by slicing 2048 length segments
from real music pieces in datasets. If the real music is not
long enough, padding with 0 and a mask will be added. The
REMI representations have value range from 0 to 256, but
each value will be represented using one hot representation
by a 257-dimensional vector. Therefore, we can use cross-
entropy loss for this stage.

LG = LCE

The first stage will end until convergence.
For the second stage, both the generator and discrimina-

tor will be trained in an adversarial style. Also, only the
EMOPIA dataset with emotion tags is used and the emo-
tion condition will be input to the generator and discrimi-
nator. The generator will firstly generate the fake music of
128-length REMI from 16-length of prime REMI sequence.
This prime sequence of 16-length provides only informa-
tion around 2 notes and 1 tempo, which provides a good
initialization for the generator to do auto-regressive gener-
ation. The prime sequence is obtained from slicing first 16
elements in the input 128-length sequences. The generated
fake sequences will be input to the discriminator and obtain
adversarial loss. The adversarial loss we used here is RS-
GAN loss from [16]. Besides adversarial loss, the teacher
forcing training like the first stage with 128-length input
will go on at the same time. The cross-entropy loss for
teacher forcing training and adversarial loss from discrim-
inator’s global and local predictions will be weighted and
combined together.

LG = LCE + αLRSGANG−global + βLRSGANG−local

where α and β are hyper parameters and the RSGAN loss
for generator is:

LRSGANG
= −Ex,z[log(sigmoid(D(x)−D(G(z))))]

The generated fake sequences will be input to the dis-
criminator and the pre-trained VAE texture encoder inside
the discriminator.. Before being forwarded through the



VAE texture encoder in the discriminator, the generated
REMI sequences will first be converted to MIDI, and then
the MIDI will be converted to piano roll matrix, which is the
input type of the VAE texture encoder. The gradient back-
propagation of the whole VAE model is eliminated. The
obtained piano roll will be forwarded through the texture
encoder to get the texture feature. The generated REMI se-
quences will be forwarded through the discriminator, and
the discriminator is trained by RSGAN loss plus gradient
penalty loss. Both loss will be computed for local and
global prediction, and weighted summed.

LD = LRSGAND−global + βLRSGAND−local

+γ(LGP−global + LGP−local)

where β and γ are hyperparameters and the RSGAN loss
for the discriminator is:

LRSGANG
= −Ex,z[log(sigmoid(D(G(z))−D(x)))]

and the gradient penalty loss is:

LGP = Ex̂[(∥∇x̂Dϕ(x̂)∥2 − 1)2]

x̂ = θG(z) + (1− θ)x, θ ∈ [0, 1]

in which x̂ is a random point sampled between the real data
and generated fake data.

5. Experiments
5.1. Evaluation

We will evaluate our approach based on the quality of
the generated music clip and the accuracy with which that
music clip conveys the target emotional signal. To achieve
this, we use both objective and subjective measures for both
criteria. For objective evaluation, we used the automatic
evaluation indicators proposed in [6] [36]. For subjective
assessment, we will use a set of human assessment indica-
tors. We will use these metrics to compare our transformer
with the most advanced emotion-constrained symbolic mu-
sic generation models currently available in the literature.

5.1.1 Objective

We chose Pitch Range (PR), Number of Pitch Classes
(NPC), and Polyphony (POLY) for our objective evaluation.
Pitch Range is specified as the number of octaves that an in-
strument or a singer can cover, from the lowest note to the
highest. Number of Pitch Classes is the number of unique
pitch classes used. Polyphony is the average number of si-
multaneous notes. We will use the Muspy Library [5] to cal-
culate them. We will generate 400 samples for each model,
100 per class, and evaluate them based on the characteristics
we chose above. The average results will then be calculated
to determine the overall model score.

5.1.2 Subjective

We use 1) Valence (is the piece negative or positive); 2)
Arousal (is it low or high in arousal) to help us evaluate.
We will conduct a subjective evaluation of our model by
administering a survey to participants, they will be asked
to rate the generated music pieces’ valence and arousal on
a 5-point scale, ranging from very low to very high. Each
participant will be assigned 24 musical excerpts, with 8 for
each model and 2 for each of the four emotional categories.

5.2. Settings

In experiments, we compared the performance of three
models, which are Compound Word Transformer (CWT) in
[15], conditional transformers trained in GAN style (Trans-
formerGAN) in [26], and our proposed model with an extra
pretrained texture encoder (GANVAE). The CWT is a con-
ditional transformer generator without discriminator, which
thus does not have adversarial training. The Transformer-
GAN is basically our proposed model without the extra pre-
trained. Our proposed GANVAE is based on the architec-
ture of TransformerGAN [26].

We evaluate both three models both objectively and sub-
jectively according to the evaluation methods mentioned in
Section 5. The codes for training and evaluation are all
implemented using Pytorch and fast-transformer. The ex-
periments are done with a single GPU of RTX3090. For
the training of our proposed GANVAE model, the first pre-
training stage is trained for several hours until the loss con-
verges, which is around 100000 steps, and the second ad-
versarial stage is trained for a few days, which is around
25000 steps. The adversarial stage is much slower than the
first stage due to the MIDI-Piano roll conversion and dis-
criminator forwarding. The training for TransformerGAN
is similar, while CWT without adversarial stage is much
faster. The batch size we used is 16, and in the adversarial
stage, discriminator is updated once per step. After training,
we used the saved model to generate large amount of mu-
sic with a length of around 30 seconds to 100 seconds. The
prime sequences for the generation are valid or real music
sequences with length of from 8 to 16. This length of prime
sequence can produce a reasonable start point, and will not
obey the property of creating new music because the infor-
mation in prime sequence with 8 to 16 length only contains
1 to 2 notes, which is very subtle compared to the 30 to
100 seconds music that has length around 2000 in REMI
sequences form. The evaluation is done on the generated
music, and the results are shown in the following sections,
which suggests that our

5.3. Objective Evaluation Results

For objective evaluation, we used the automatic evalu-
ation indicators proposed in [6] [36], in details we chose



Method PR NPC Poly

EMOPIA 50.94 8.50 5.60
CWT 49.20 8.25 4.36
TransformerGAN 50.43 10.125 5.08
GANVAE 51.23 9.98 5.04

Table 1. The evaluation results comparing to the original EMOPIA
dataset. PR represents Pitch Range, NPC represents the Number
of Pitch per Class, and Poly represents Polyphony.

Pitch Range (PR), Number of Pitch Classes (NPC), and
Polyphony (POLY). We generated 100 samples for each
model, 25 per class, and evaluate them based on the 4 char-
acteristics. The results are shown in Table 1.

It can be seen from the table, our ’GAN-VAE’, has
slightly better performance for pitch range but is worse in
the number of pitch classes and polyphony(the closer to the
statistics of the training set EMOPIA the better). How-
ever, our model contains another module, so the number
of parameters is greater than the Transformer GAN model
while the performance is similar, which suggests that the
proposed component is not very effective. CWT has better
number of pitch classes, but has much lower pitch range and
polyphony.

5.4. Subjective Evaluation Results

In order to subjectively evaluate our model, we created
a survey. Participants were asked to assess the musical ex-
cerpts generated by the model based on their overall qual-
ity and their ability to evoke the desired emotion. They
assessed the characteristics of the samples using a 5-point
Likert scale ranging from very low to high. Each partici-
pant had to listen to 24 pieces of music, eight for each model
and two for each of the four divisions. The average scores
in Figure 5 for each model’s portraits, originality, structure,
and overall quality indicate that our proposed GANVAE has
similar competitiveness in high arousal and low valence to
the other methods, but TransGAN outperforms ours in the
other emotion conditions, according to our survey.

Figure 5 depicts the results of comparing the partici-
pants’ responses to valence and arousal queries with the
actual emotion labels used in the generation process. Our
findings indicate that models have a more difficult time en-
coding valence than arousal, implying that certain musical
aspects are easier for neural networks to comprehend than
others.

Moreover, we see that, in general, our model is simi-
lar to the baseline. By looking at the boxplots, between
the three, it seems that CWT and TransformerGAN some-
times produce samples that place themselves more strongly
on their theoretically relevant side, and GANVAE performs
similarly to these two models, placing more than half of ex-

Figure 5. Results of the experiment where participants rated mu-
sical samples according to their perceptions about valence and
arousal. The CWT, TransGAN, and GANVAE correspond, respec-
tively, to the Baseline model, Transformer GAN and Transformer-
GAN with VAE.

cerpts on the correct side of the midline.

5.5. Discussion

The performance of the model with VAE texture encoder
added doesn’t have a decent difference from the one without
VAE texture encoder. We manually checked the music gen-
erated by the generator during the training and analysis it to
find a possible explanation. Since the length of generated
REMI during the GAN stage is 128, which usually con-
tain around 32 notes after being converted into MIDI. The
piece is around 4 to 5 seconds. We think that MIDI in this
length is either inconsistent with the midi file used to train
the pre-trained VAE encoder, or is too short to get some use-
ful information for the discriminator. Another reason is that
the higher level information contained in the texture embed-
ding space may not be consistent with the representation the
Transformer GAN can learn, in the future it is meaningful
to further investigate the higher level representation of the
music.

In addition, we find that many of our generated pieces
are like chord bars. However, there are various patterns in
real performance. We chose one example and put it in Fig-
ure 6. In the future, researchers may also lay more empha-
sis on generating music with more patterns and styles, even
making them controllable.

The supplementary zip file contains generated samples
in MIDI format. We also include a few samples in MP3
format. However, the MP3 format is too large, so we only
include a few.



Figure 6. Results of generated pieces’ sheet. one can see that the
generated music is only chord bars.

6. Conclusion
We tried to improve the performance of the Transformer-

GAN model to generate music pieces with certain condi-
tion labels. Via disentangling and enhancing the texture in-
formation through a pre-trained VAE model, we achieved
similar performance with the state-of-the-art Transformer
GAN model. Although there is no improvement, we be-
lieve that this idea can work by either finding a better way to
match the embeddings of the texture features and the gener-
ated sequences or just fine-tuning parameters. Our project
also provides an idea of fusing more emotional informa-
tion through the disentanglement of the musical character-
istics(i.e. texture, chord, beat) when conditioning on emo-
tion labels, which may be a potential direction for future
research.
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